Evaluating the Influence of Stem Form and Vigor on Product Potential, Growth, and Survival for Northern Commercial Hardwood Species

Mark Castle and Aaron Weiskittel University of Maine, School of Forest Resources

Introduction

- Northern hardwood and mixed-wood forests occupy a large area from New York to Canada
- Hardwoods species can yield highvalue saw log and veneer products
- In 2011 hardwoods accounted for 1/3 of harvested saw log volume across ME, NY, NH, and VT
- Increased prevalence of hardwoods in portions of the northeast

Hardwood Management

• Stem quality much more variable compared softwood species

Stem form

- Significant forks
- Multiple stems
- Severe sweep

Fork

Multiple stems

Stem damage

- Cavities
- Decay
- Fungal pathogens
- Cracks
- Seams and scars

Decay

Fungal pathogens

Gaps in Hardwood G&Y Research

- 1. Influence of stem form and damage not accounted for in growth and yield applications.
- 2. Efficacy of tools for hardwood management
 - Tree classification systems

Most influential defects?

Classification complexity?

NHRI Risk Classes

Research Objectives

1. Assess the occurrence of different stem forms and risk across hardwood species

2. Quantify potential saw log product recovery as a function of tree size, stem form, and risk

3. Incorporate stem form and damage into growth and mortality predictions

Recommendation of a revised tree classification system

Data Collection

Sampling Locations

- 1. Scientific Forest Management Area
- 2. Austin Pond Research Area
- 3. Penobscot Experimental Forest
- 4. Holt Research Forest
- 5. Kingman Farms Research Area

- 179 previously measured plots were sampled
- Target species: aspen, red maple, sugar maple, northern red oak, paper birch, and yellow birch
- *** Additional dataset acquired from NHRI in New Brunswick

Maine and New Hampshire	New Brunswick (NHRI)
 Standing tree measurements DBH, heights (20% of HW) 	1. Destructively sampled measurements
2. NHRI form and risk classifications	2. NHRI form and risk classifications
 3. Ocular assessments of product ~2.3 m sections to 10cm top Saw log 	Measurements of log length and diameters
PulpCull	4. Each log received classification as saw, pulp, or cull

Saw log Criteria: Trees with DBH >= 25.4 cm and minimum 20 cm top

Quantifying Saw Log Potential

 $S_{vol}/M_{vol} = \frac{Saw \log volume (S_{vol})}{Merchantable volume (M_{vol})}$

• Linear mixed effects model (Site/Plot)

Explanatory variables tested

- DBH, species, form, risk
- Climate site index, topography, lat-long, soil characteristics

<u>Final Model</u>

 $S_{vol}/M_{vol} = DBH + ln(DBH) + Species + Form_3 + Risk_2 + ln(DBH) x Species + ln(DBH) x Risk$

Diameter Growth

 $PAI = \frac{DBH_2 - DBH_1}{YIP}$

- Continuous forest inventory
- Nonlinear mixed effects model (Site/Plot)

Explanatory variables

- DBH
- Species

Site quality Form and risk

• One and two-sided competition

<u>Final model</u>

PAI = DBH + ln(DBH) + ln(BAL + .1) + BAHA + DWT + Species

+ Risk₂+ DBH x Species

Framework For Revised Tree Classification System

4 classifications of stem form

Single straight stem

Multiple stems

Sweep - lean

Low fork

2 classifications of risk

Acknowledgements

<u>People</u>

- Aaron Weiskittel
- Robert Wagner
- Mark Ducey

- Jereme Frank
- Karl Buckley

- Alexander Audet
- Alexander Parkhurst
- Dan Perry
- Matthew Todd
- Nathan Andricovich

Funding

- Northeastern States Research Cooperative
- Cooperative Forestry Research Unit
- US Forest Service

<u>Data</u>

- Baxter State Park: Scientific Forest Management Area
- Holt Research Forest
- University of New Hampshire
- US Forest Service
- Northern Hardwood Research Institute

Questions or Comments?

Model Fits

Potential Saw log Volume Model

R ² Fixed	R ² Site	R ² Plot	RMSE	Bias
0.33	0.40	0.33	0.21	-0.05

Periodic Annual Increment Model

R ² Fixed	R ² Site	R ² Plot	RMSE (cm yr⁻¹)	Bias (cm yr ⁻¹)
0.20	0.20	0.34	0.072	0.02